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A numerical solution is presented for the problem of transient freezing of laminar flows 
inside a circular pipe. Unlike other available solutions on similar subjects, the f low motion in 
the present study is determined as part of the solution where the fluid transport process is 
represented by the elliptic Navier-Stokes equations characterized by diffusion in the radial 
and axial directions. In the solid and liquid regions, thermal diffusion is accounted for in the 
axial direction as well as in the radial direction. The vorticity-stream function approach is 
used in the formulation of the f low problem. A Landau transformation is applied to map the 
variable-geometry physical domain into a fixed-geometry computational domain. A time- 
lag procedure is employed to treat the moving grids, and interpolation is used to determine 
the field variables at the new grid locations from those known at the old grid points. Three 
cases of f low motion are considered: f low with uniform velocity at the entrance, f low with 
fully developed profile at the entrance, and slug f low through the pipe. The position of the 
solid-liquid interface, the temperature distribution, heat flux at the walls, and the heat 
transfer coefficient at the interface have been calculated for prescribed and calculated 
velocity profiles. Differences in solidification rates for the three kinds of f low configurations 
demonstrate that the computed f low profiles show significantly different results from the 
slug f low case, demonstrating the need for accurate treatment of the f low field. The 
influences of the Reynolds and Stefan numbers on the solidification rate are also 
investigated. The accuracy of the present method is verified by comparing the results with 
the closest analytical solution using the case of a slug velocity profile through a pipe. 
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Introduction 

In many practical engineering problems the solidification of 
fluids in an internal pipe flow in the entrance region is of interest 
and importance. In some cases, such as in chilled-water air 
conditioning systems, water supply through pipes in a cold 
environment, and fluid flow in process industries, freezing of the 
fluids may be critical and potentially damaging. Also, in 
applications like casting, the cooling rate is one of the important 
factors in determining the microstructure of the final products. 

One inherent difficulty in solving problems of this type is that 
the solid-liquid interface moves in time and is not known a 
priori. Another difficulty arises in determining the liquid flow 
through a continuously deforming domain. The effect of flow 
motion becomes particularly important when the thermal 
behavior of the fluid needs to be taken into account. Two of the 
earliest significant investigations on this subject were reported 
by Hirschberg ~ and Zerkle and Sunderland 2 for liquid 
solidification in a tube with the assumption of steady-state 
laminar flows. Later, Ozisik and Mulligan 3 presented a solution 
for transient freezing of laminar flows inside channels, assuming 
a constant wall temperature. The effects of eonvectively cooling 
boundary conditions were reported by Sadeghipour, Ozisik, 
and Mulligan 4. Shibani and Ozisik 5'6 presented solutions for 
the freezing of turbulent, internal flows. A variational solution 
was obtained by Bilenas and Jiji 7 for the problem of 
axisymmetric fluid flow in tubes with surface solidification. The 
common simplifying assumptions in these studies are the 
prescribed velocity profiles, quasi-steady-state heat conduction 
in the solid region, and negligible axial conduction. Another 
assumption commonly made in the theoretical analysis of the 
solidification problem is that the solid-liquid interface is smooth 
and the flow cavity has a monotonically decreasing diameter. 
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Instead, Gilpin s'9 observed wavelike or cyclic variation in cross 
section along the axial direction of the tube. Gilpin found that 
ice-band spacing normalized by the pipe diameter is 
independent of the flow Reynolds number and can be correlated 
with the cooling ratio Oc((Tm-Tw) / (To-T in ) )  for laminar and 
turbulent flows. Ice-formation phenomena for water flow 
between two horizontal parallel plates were investigated by 
Seki, Fukusako, and Younan 1°. Smooth ice-formation types 
and transition ice-formation types were observed, both 
occurring for Re/0°'741<>104, respectively. Cheung and 
Epstein ~ collected and reviewed the important results of the 
work on the solidification and melting in fluid flow in the 
literature up to 1982. 

The finite difference methods and the vorticity-stream 
function formulation for the flow motion supply a means of 
solving phase-change problems numerically rather than 
analytically. Barakat and Clark ~2 successfully applied these 
methods to solve a problem of two-dimensional transient 
laminar natural convection. Kroeger and Ostrach ~3 used this 
approach to solve phase-change problems, including convection 
effects in the liquid region. Yim et al. ~* presented experimental 
studies as well as some comparison with a simplistic quasi- 
steady-melting model and Petrie et al.~ s reported a similar study 
for two-phase flows. Thomason and Mulligan ~6 and 
Thomason, Mulligan, and Everhart~7 experimentally 
investigated the flow instability and pressure drop during the 
freezing of turbulent internal pipe flows. Several studies 
employed transformation techniques to analyze the 
multidimensional phase-change problem by mapping the 
physical domain into a simpler computational domain ts-2t. 
Recently, boundary-fitted coordinate systems using numerically 
generated grids have been applied to analyze problems that 
have solid-liquid interfaces of complex shapes 22-2.. 
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Even though there have been many studies on the subject of 
the solidification of internal channel flows, the complete 
governing equations which really represent the solidification 
process have not been solved. In the present investigation, a 
finite difference algorithm has been developed to solve the 
problem of transient freezing of a two-dimensional forced 
laminar flow inside a pipe using a Landau transformation. The 
assumptions that are frequently made, such as negligible axial 
conduction and quasi-steady-state heat conduction in the solid 
region, have been removed, and the flow motion is determined 
as part of the solution. The solid-liquid interface is assumed to 
be smooth and monotonically decreasing along the axial 
direction. This assumption is validated by considering that the 
solidification occurs in the inlet region. The cooling temperature 
ratio 0~ in the present analysis ranges from 0.5 to 2.5, which 
reflects the ratio of ice-band spacing to pipe diameter to be 
larger than 15 from Gilpin's correlation 9. However, the ratio of 
pipe length to pipe diameter is 10, which implies that less than 
one ice-band is considered in the present study. The comparison 
between the present numerical solution obtained from the 
complete governing equations for the solidification process and 
other available analytical solutions obtained from the simplified 
governing equations is used to establish the validity of the slug 
flow assumptions made in the literature. 

P r o b l e m  f o r m u l a t i o n  

The transient freezing of an axisymmetrical flow inside a straight 
circular pipe is considered. Initially, the fluid inside the pipe is 
assumed to be at rest with its temperature at the freezing point, 
T~. The fluid then starts flowing along the axial direction which 
is accompanied by a step reduction of the wall temperature T~ 
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Figure I The nomenclature and the schematic description for 
solidification in developing pipe flows 

down to a value below the freezing point. The flow temperature 
at pipe inlet is To, which is higher than the freezing point. A 
solidified region quickly forms over the inside surface of the pipe 
wall and grows toward the centerline. Figure 1 illustrates the 
geometry and the general nomenclature for the problem. The 
flow is assumed to be axisymmetrical, laminar, and 
incompressible. Furthermore, it is assumed that the fluid has a 
well-defined, distinct freezing point, and its density remains 
unchanged during solidification. 

The equations governing the present problem are those 
resulting from conservation principles and can be expressed as 
follows: 

Solid region 

(1) 

N o t a t i o n  

Cp Specific heat 
h Local heat transfer coefficient, -kt(OTJOr)J(T b -  T m) 
H Dimensionless local heat transfer coefficient, 2rwh/k t 
k Thermal conductivity 
K Dimensionless thermal conductivity, k(T  m -  Tw)/cqpt2 
L Pipe length 
p Fluid pressure 
P Dimensionless pressure, pr2/p,~2pr 
Pr Prandi, l~number of the liquid, vt/ct, 
q Local heat flux, -k~(8TJOr) 
Q Dimensionless heat flux, qr~/kt(To-Tin) 
r Radial coordinate 
R Dimensionless radial coordinate in the liquid region, 

r/ri 
R* Dimensionless radial coordinate in the solid region, 

( R -  1) / (1 /g , -  1) 
R~ Dimensionless radial location of the interface, r.Jrw 
Re Reynolds number, 2u~rw/v 
Sf Stefan number, Cp,(Tm-T~)/2 
t Time 
T Temperature 
T b Bulk mean temperature 
u~ Velocity at the centerline 
U~ Dimensionless centerline velocity, r~u¢/~t~ 
u b Mean velocity at the entrance 
u~ Radial velocity 
U, Dimensionless radial velocity, rwU,/C q 

u= Axial velocity 
Uz Dimensionless axial velocity, rwuz/ct l 
z Axial coordinate 
Z Dimensionless axial coordinate, z/rw 

Greek symbols 
~t Thermal diffusivity 
0 Dimensionless temperature, ( T -  T=)/(T m -  Tw) 
0 c Cooling temperature ratio, (T= - Tw)/(T o - Tin) 
2 Latent heat 
# Viscosity 
p Density 
r Dimensionless time, tcqSf/r 2 
~, Stream function 
~P Dimensionless stream function, $/cqri 
o9 Vorticity, d u , / & -  du,/dz 
f~ Modified dimensionless vorticity, ogrfw/cqR 

Subscripts 
i Solid-liquid interface 
l Liquid zone 
m Melting/freezing 
o Pipe inlet 
s Solid zone 
w Pipe wall 

Superscript 
n Computational time level 
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Liquid region 

COu= k 1 CO 
COz r ~r flu,)= 0 (2) 

[ COu, COu, COu,'X COp [ CO2 u, 1 COu, u, CO2u,\ 3 

[COu= COu= Ou='X Op [CO2u= 10u= COZu=\ 
o7+ 

COT, COTz 0TI /'CO2T~ 1 COT~ CO'Tt~ 
ca + - )  (5) 

At interface 

1 [cori\2\/" COTs COTt\ cori 
+ t~--~-z) ) t  k, -~-r-k,-~-r ) = p,,l ~ (6) 

In order to avoid performing calculations in the transient and 
irregularly shaped domains, we apply the Landau 
transformation twice. The first Landau transformation is 
applied to the governing equations through a change of 
variables and nondimensionalization by defining 

R - r/ri (7a) 

R i -  rdr~ (7b) 

Based on common observation, it is assumed that the rate of 
change of the radial position of the interface with respect to the 
axial direction is small. This assumption can be validated by 
observing the transient development of the ice structure in a pipe 
reported in Ref. 9. This assumption of negligible interface slope, 
cordcoz reduces the complexity and length of the transformed 
derivatives, subsequently giving 

CO 1 CO CO 1 CO CO =,Sf CO 
COr riO OR' COz r~ COz COt r 2 COz 
CO 2 1 CO 2 CO 2 1 CO 2 (8) 

--=-icor 2 ri COR 2' ~z2=-r 2 COZ 2 

It is necessary to explain more carefully the transformation of 
the time derivative. Since the solid-liquid interface location r~ is 
time-dependent in the transient freezing problem, the time 
derivative should be formally transformed into the expression 

CO COz CO COR CO at,Sf[co R COR, COl . . . .  + - - - - = - ~ -  (9) 
COt cOt coT Ot COR r~ ~ Ri ~ O-R 

In the treatment of a moving-grid-type problem, there are 
basically two approaches: One is to consider the dependence of 
the variables on both time and space. This leads to the second 
term of the type (COR/COt)(CO/COR). This term can be seen as a 
"velocity" quantity indicating the velocity of the coordinate 
points, as treated by Saitoh and Hirose 2°. A second approach, 
which is used in the present work, is to consider the "pseudo 
steady-state" problem and assume that during each time step 
the solution domain remains unchanged. The validity of this 
assumption can be further verified by noting that the second 
term is an order of magnitude less than the first term. Although 
the first procedure may appear to provide a more accurate 
solution, the numerical evaluation of the derivatives contains 
substantial errors. On the other hand, the second approach 
becomes more straightforward and accurate, particularly for 
slowly deforming domains of the type considered in the present 
work. This approach has been utilized by Sparrow, Patankar, 
and Ramadhyanit s in their investigation of the effects of natural 
convection on the melting process. 

After the first transformation process, the entire physical 
domain is mapped onto a new one, where the liquid region is 
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rectangular; i.e., O<~Z <~ L/rw, 0<<. R<. 1, and the solid-liquid 
interface is always maintained at R =  1. However, the solid 
region after the first transformation is still neither time- 
independent nor rectangular; i.e., I<~R<~I/R~. A second 
Landau transformation is employed to immobilize the domain 
of the solid region that has been obtained by the first 
transformation process. This is accomplished by defining a new 
transformation variable 

R - 1  
R* = - -  (10) 

1/Ri-  1 

which yields 

CO Ri 0 
0 ~ =  I_R~ 0R ~ (11) 

In the present study, a vorticity-stream function formulation 
is used to represent the fluid motion, The resulting governing 
equations in terms of dimensionless variables are as follows: 

Solid region (0 <~ R* <~ 1, 0 <. Z <<. L/rw) 

~tSf COO+ CO20+ 1 1 a0, 1 CO20, 

as COz = COZ2 4 R*(1 -R i )+Ri  1 - R i  OR ~ ~ (1 -Rt )  ~ COR *---~ 

(12) 

Liquid region (0 ~< R ~< 1, 0 <~ Z <~ L/rw) 

011 U, 011 0il [ 1 co2il 3 0il CO2Il'X 
S f - ~  +~-~i ~-~-+ U, ~ - =  Pr t~-2 ~-R~ + R~-RR ~ - +  ~-~- ) (13) 

1 CO2~F 1 0~P CO2~P 
R2il = + R+ - -  (14) 

R+ COR 2 RiR COR OZ 2 

SfcoOt 1 COOl COO l 1 CO201 1 1 COOl CO20~ 
"~T +~ii Ur-'~+ U= ~-~=-~I COR2 -I R2 R COR + COZ ~ (15) 

where 

1 0~/ 1 0~P 
U " = R ,R OR' U R = - -R CO--Z (16) 

i l - ! (  coy" R cov,  
R ~ - ~ - - '  --~- ] (17) 

Solid-liquid interface (R = I, R* = 0, 0 <~ Z <~ L/rw) 

0~_ ( R ,  COO.I_R, COR. COO,\_ R,Sf = K= K t - ~ )  (18) 

A modified form of the vorticity variable as shown above 7 is 
used for improved formulation and computational advantage. 

B o u n d a r y  c o n d i t i o n s  

Due to the elliptic nature of the conservation equations, the 
boundary conditions for all the field variables have to be 
specified along the entire boundary enclosing the solution 
domains. At the inlet of the pipe, the stream function 
distribution is calculated from the specified inlet fluid velocity 
profile for which two cases (i.e., slug and parabolic profiles) are 
considered. At the outlet, the gradient of the stream function in 
the axial direction is assumed to be zero; i.e., the streamlines are 
assumed to be perpendicular to the exit plane of the pipe. This 
boundary condition frequently appears in the literature 2s and 
impfies that the flow is almost fully developed at the exit. Even 
though the fully developed condition may not be achieved at the 
exit of the channel, this zero-gradient boundary condition offers 
sufficient flexibility for the flow distribution. Furthermore, it is 
intuitively very accurate for narrow channels of the type 
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considered in the present study and has negligible influence on 
the upstream portion of the flow. At the interface, the condition 
of no flow in the direction perpendicular to the interface is 
applied, which we can justify by noting that for the problem 
under consideration the progress of the solidification interface is 
much slower by comparison with the residence time for the fluid 
flow. This would not be accurate for flows subject to very rapid 
solidification. On the centerline, the stream function remains 
constant due to axisymmetry. 

The vorticity boundary conditions are derived from velocity 
distributions at the inlet and are zero on the centerline by the 
axisymmetrical flow consideration. As for the stream function, 
the vorticity is assumed to have zero gradient at the exit. At the 
interface, 

1 OU= 1 d2gl I 
f~(Z, 1, z )= - -  = (19) 

R dR Rt d R  2 

which can be obtained by using a Taylor series expansion 25. The 
fluid is assumed to have a uniform temperature distribution at 
the inlet; at the outlet the temperature gradient along the flow 
direction is taken to be negligible, indicating that the convective 
effects are taken to be much more dominant than the diffusion of 
heat. The axial conduction at the pipe exit in the solid region is 
also assumed negligible. This can be justified by noting that the 
radial dimension is much shorter than the overall length of the 
pipe section considered in this study. Thus, the major thermal 
gradients that cause solidification occur solely in the radial 
direction as the flow develops. Therefore the temperature 
distribution in the solid region at the exit zone is almost one- 
dimensional as the solidification front becomes increasingly 
parallel to the axis. This is also apparent from Figures 2, 7, and 8 
when the radial and axial directions are properly scaled. The 
solid-liquid interface is assumed to be isothermal and has the 
value of the melting point. On the centerline, the axisymmetric 
boundary condition is applied. Summarizing, we have the 
following: 

At the entrance: 
qJ(O, R, z)= UcR~(R2/2- R4/4) 

for parabolic velocity at inlet 

• (0, R, z)=½U~R~R 2 for slug velocity profile at inlet 

Q(0, R, r) = - 2U~ for parabolic velocity profile at inlet 

f~(0, R, ~) = 0 for slug velocity profile at inlet 

0z (0 ,  R ,  z )  = 0 o 

0~(0, R, z) = 00 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

At the exit: 

dW(L,R,z) drY(L, R,T) dO,(L,R,z) dO,(L,R*,z) 
- = = - 0  ( 2 6 )  

dZ dZ dZ dZ 

Along the centerline: 

~g(Z, 0, z)= 0 (27) 

f~(Z, 0, T) = 0 (28) 

dO,(Z, O, T) 
0 (29) 

dR 

At the solid-liquid interface: 

W(Z, I, z)=volumetric flow rate (30) 

2(q 'p-  ~ )  
I'~(Z, 1,z)= ~ (31) 

where Wv is the stream function value at the node in the fluid, 

which is one nodal distance AR away' from the solid interface. 

Ol(Z, 1, z) = 0s(Z, 0, ~) = 0  (32) 

The pipe surface is considered to be held at a constant 
temperature that is lower than the freezing point of the fluid, 
starting at the pipe entrance; thus 

Os(Z, 1, z) = - 1 (33) 

The above set describes the complete boundary conditions 
needed to solve the present problem. 

Numerical procedure 

An explicit finite difference method is adopted to solve the 
governing equations. The convective terms in Equations 13 and 
15 are linearized by assuming that the velocity components U, 
and U= have the same values as they did at the previous time 
step. A first-order upwinding scheme is used to represent the 
convective terms, and second-order central differencing is used 
for the remaining derivative terms. For the terms (1/R)(dOt/dR) 
and (1/R)(d~g/dR), a singularity occurs at R = 0; this singularity 
is eliminated by taking the limit forms of these terms. In order to 
obtain satisfactory accuracy, the temperature gradient at the 
interface is evaluated by a second-order one-sided differencing 
in both the solid and liquid regions. 

One of the main computational difficulties is the 
determination of the interface movement. To circumvent this 
problem, we use a time lag procedure, which assumes that the 
moving interface is stationary during a small time interval 
between the heat transfer and the progress of the interface. At 
each time step, the fluid motion is evaluated using Equations 13 
and 14. After the flow field is obtained, the temperature 
distribution in both solid and liquid regions can be obtained by 
using Equations 12 and 15, respectively. The new position of the 
interface can thus be determined from Equation 18 as 

1 R" A'c ( R~ dos dOt'~ 
R7 + = i + ~ , s f _ K s l _ R ,  dR. K z ~  ) (34) 

An identical computation procedure can be employed again to 
yield all the variables and the interface location at the next time 
step, and so forth. 

The result of the Landau transformation and the time-lag 
procedure is that the relationship between a given radius 
position in the physical domain and the transformed 
coordinates changes as the interface moves. Subsequently, a 
fixed point on the computational domain corresponds to 
different physical locations at two consecutive time steps. Thus, 
a reevaluation of the field variables after each time step is 
required. This is carried out by linear interpolation at all grid 
points except those which correspond to the newly solidified 
region. For these, the stream function and the vorticity are 
assumed to have their values at the interface, and the 
temperature is assumed to be at the freezing point. 
Furthermore, to fulfill both local and overall mass conservation, 
the interpolation for the velocity components is performed by 
differentiating the stream functions at the newly mapped points. 

In order to keep the explicit finite-difference calculation 
stable, the time increment is evaluated before the computation 
at each time step. It can be seen that the explicit finite-difference 
expressions for the governing equations can be written in the 
form 

l - I" + ~ -  " " _ " " ~)Az 1,J -- (AI,jIII- 1.s + BT.jFIT+ 1,j + c~.srlT.J 1 + OtjFlt,s + 

+ (1 - ET, jAT)HT, J (35) 
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Variation of solidification front with time at selected axial 
locations for Sf=0.643, Pr = 13.2, and Re = 100 

where I-1 can represent temperature or vorticity and A, B, C, D,. 
and E are the coefficients evaluated from the field variables. 
Stability requires that the coefficients in front of 1"I be positive. 
Since A, B, C, D, and E are always positive, the stability criterion 
becomes 

1 - ETjAr  >~ 0 (36) 

In the present problem, meshes of 21 x 10 in the solid region 
and 21 x 12 in the liquid region, in the axial and radial 
directions, respectively, have been used to generate the results. 
In the computational domains, the grids are evenly separated 
along each direction, which results in a uniform distribution of 
points in the axial direction and a skewed distribution in the 
radial direction of the physical domain. The grid independence 
study is carried out by doubling the grid number in the axial 
direction (i.e., meshes of 41 x 10 in the solid region and 41 x 12 
in the liquid region). The reason for doubling the nodal points in 
the axial direction is that the nodal point distribution in the 
axial direction has much larger spacing than that in the radial 
direction. The solid-liquid interface positions derived using the 
doubled grid solution show no visible difference from those 
displayed in Figure 2. 

R e s u l t s  a n d  d i s c u s s i o n  

In order to generate results and perform comparative evaluation 
with results obtained by analytic methods and different 
nondimensional variables, the thermal and fluid properties close 
to those of water at 0°C are selected for computation. Sf= 0.643, 
Pr = 13.2, and Re = 100 are used in Figure 2 through Figure 6. 
The pipe length is 10 pipe diameters. The fluid motion is handled 
in two distinct ways. First, a slug velocity profile is assumed, 
which eliminates the need to compute the velocity field, and the 
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value of the mean velocity is obtained from continuity. This case 
enables the results to be compared with analytical solutions to 
assess the accuracy in solving the moving-boundary problem. 
Furthermore, this case approximates turbulent flows with 
flatter velocity profiles. In the second group of computations, 
full expressions governing the fluid motion are considered which 
are referred to as the computed exact velocity solutions. In both 
of these cases, a constant mass flow rate of liquid through the 
entrance of the pipe is considered, which would indicate the 
necessity for providing a greater pressure difference to maintain 
the flow rate as the solidification progresses. This assumption, 
however, is not a limitation of the approach, and any time- 
dependent inlet velocity profile can be considered once it is 
specified or coupled with the pressure drop. 

Figure 2 shows the transient behavior of the solid-liquid 
interface position at a quarter of the pipe distance from the inlet 
and at the end of the pipe. Included in this figure are the analytic 
results obtained by Ozisik and Mulligan 3 for a slug velocity 
profile through the pipe, numerical results for a slug flow, and 
numerical results for fluid flow with given velocity distributions 
at the entrance. The deviation between the analytic and 
numerical results for both slug flows can be attributed to the 
absence of axial conduction and the quasi-steady-state 
assumption for the solid phase in the analytic results, which 
have been accounted for in the present study. Figure 2 also 
reveals that the solidification rate is faster if exact velocity 
profiles are computed simultaneously rather than if a slug 
velocity profile through the pipe is used in the flow motion. This 
phenomenon can be explained in that the motion of fluid 
particles close to the solid zone move more slowly than those at 
the centerline for the computed flow field, reducing the thermal 
gradient at the liquid side of the interface. This also shows that 
for the computed flow field, the influence of the velocity profile 
at the entrance diminishes as the flow develops further 
downstream. 

Figure 3 shows the temperature distribution as a function of 
the radius at a quarter of the pipe length from the inlet and at the 
end of the pipe. Closer examination of the results from analytic 
and numerical methods for the §lug flows reveals that the 
influence of axial conduction on the temperature distribution is 
significant, especially at the downstream of the pipe. This also 
can explain the reason why the deviation between curve 5 and 
curve 6 is larger than that between curve 1 and curve 2 in Figure 
2. Figure 4 displays the dimensionless local heat flux along the 
wall for the different kinds of velocity profiles. Plotted in Figure 
5 is the dimensionless local heat transfer coefficient at interface 
over the range Z = ~ o L  to Z = L .  The heat flux and the heat 
transfer coefficient are determined by the temperature 
distribution. Figure 6 shows the calculated velocity profiles. The 
flow development can be noted by comparing the profiles for the 
case of Z = ¼L and Z = L. This further justifies the gradient 
boundary conditions which are used for the flow variables. 

Figure 7 depicts the effect of the Stefan number (Sf=0.129, 
0.386, and 0.643) on the location of the solid-liquid interface at 
the pipe exit as a function of the dimensionless time. A large Sf 
value indicates a small value of latent heat and/or a large 
freezing-to-wall temperature difference. Either of these two 
consequently causes a faster solidification rate. Figure 7 also 
shows that on the computed flows field, the inlet flow 
distribution has little influence on the solidification rate at the 
pipe exit for the specified parameters and the Reynolds number. 
As shown consistently in each set of constant Stefan number, the 
discrepancy of the solid-liquid interface between the slug flow 
and the computed exact flow increases as the solidification 
progresses. Similarly, Figure 8 depicts the effect of the Reynolds 
number on the progress of the solidification front for Sf = 0.643 
and Pr=  13.2. It illustrates that at lower Reynolds number and 
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Variation of the local heat transfer coefficient at interface Figure 5 
along the axial direction at t = l  h for Sf=0.643, Pr=13.2, Re=100 

0 

°~ 

-2 

1. Slug flow, analytic solution [3] .  

2. Slug flow, numerical solution. 

3. Computed flow with slug pro 
file at inlet (numerical). 

4. Computed Flow with parabolic 
profi le at inlet (numerical). 

2 

~.oo ~.oo ~.oo l~.oo t~.oo ikoo ~t.oo 
Z 

Figure 4 Local heat flux distribution along the wall of cylinder at 
t = l  h for Sf=0.643, Pr=13.2, Re=lO0 

8 

8 

8 

8 "otj 
~N 
~ 8  

8 

8 

8 

8 

8 

 i0- 

Z= ¼L Z =L 
Slug flow (num.) 1 4 

Computed flow 
(slug at inlet) 2 5 

Computed flow 
(parabolic at inlet) 3 6 

O.eO 0.40 0.20 0.00 0 .20 0.40 O.BO 

r / r  w 

Figure 6 
for Sf=0.643, Pr=13.2, Re=lOO 

0.00 

Velocity profiles (Uz) at selected axial locations for t = 1 h 

230 Int. J. Heat and Fluid Flow, Vol. 9, No. 2, June 1988 



8. 

o 

i I i i 

S t e f a n  number 
0.129 0 . 3 8 6  0.643 

Slug flow, (num.) 1 q 7 
C o m p u t e d  flow 
(slug inlet) 2 5 8 
C o m p u t e d  flow 
( p a r a b o l i c  inlet) 3 6 9 

o =. 

°0.0o 

Figure 7 
interface at the exit of the problem domain for Pr = 13.2, Re = 100 

0.03 0.0e o.oe 0.tz 0.i5 o.ts 0.ai 
r / s f  

Effects of Stefan number on the location of solid-liquid 

smaller flow rate the solidification rate increases. This difference 
in the solidification rate at the pipe exit between the slug flow 
and the computed exact flow ranges from 3.9 to 10.3 ~ when 
based on the radius of the solidification front, and ranges from 6 
to 27.5 % when based on the solidification thickness. It also 
shows that at lower Reynolds number, the effect of velocity 
profiles at the pipe inlet is less pronounced. 

Additional results and a detailed analysis of the numerical 
scheme are presented in Ref. 26. 

Conclusions 

A numerical formulation of the coupled fluid flow-solidification 
problem for developing internal pipe flows is presented. The 
accuracy of the approach is demonstrated by comparing it with 
available solutions for slug flow and is found to be satisfactory. 
The Landau transformation utilized here shows that algebraic 
transformation techniques can be used effectively for this and 
other problems of similar geometries; however, advanced 
numerical techniques, such as numerical grid generation 
methods, have to be employed for more complex geometries, 
although with substantial increase in computational time. It is 
found that the influence of the flow velocity distribution on the 
solidification rate cannot be ignored, and the velocity 
distribution should be solved simultaneously with the 
temperature distribution. One of the primary advantages of the 
present approach is the flexibility in the boundary conditions; 
pipe wall temperature can be varied arbitrarily in the axial 
direction, and different flow distributions can be considered at 
the inlet of the pipe without necessitating any major change in 
the computational procedure. The present method is 
computationally feasible, with a CPU time of approximately 
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Figure 8 Effects of Reynolds number on the location of solid-liquid 
interface at the exit of the problem domain for Sf=0.643, Pr = 13.2 

0.450s for the slug velocity profile and 0.675 s for the varying 
velocity profile per computational cycle on a VAX 11/780 
computer. 
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